Information based model selection criteria for generalized linear mixed models with unknown variance component parameters

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance Component Testing in Generalized Linear Mixed Models

Generalized linear mixed models (GLMM) are used in situations where a number of characteristics (covariates) affect a nonnormal response variable and the responses are correlated. For example, in a number of biological applications, the responses are correlated due to common genetic or environmental factors. In many applications, the magnitude of the variance components corresponding to one or ...

متن کامل

Minimum Description Length Model Selection Criteria for Generalized Linear Models

This paper derives several model selection criteria for generalized linear models (GLMs) following the principle of Minimum Description Length (MDL). We focus our attention on the mixture form of MDL. Normal or normal-inverse gamma distributions are used to construct the mixtures, depending on whether or not we choose to account for possible over-dispersion in the data. For the latter, we use E...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Gaussian Model Selection with an Unknown Variance

Let Y be a Gaussian vector whose components are independent with a common unknown variance. We consider the problem of estimating the mean μ of Y by model selection. More precisely, we start with a collection S = {Sm, m ∈M} of linear subspaces of R and associate to each of these the least-squares estimator of μ on Sm. Then, we use a data driven penalized criterion in order to select one estimat...

متن کامل

Gaussian Model Selection with Unknown Variance

Let Y be a Gaussian vector whose components are independent with a common unknown variance. We consider the problem of estimating the mean of Y by model selection. More precisely, we start with a collection S = {Sm, m ∈M} of linear subspaces of R and associate to each of these the least-squares estimator of μ on Sm. Then, we use a data driven penalized criterion in order to select one estimator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2013

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2012.12.005